FPGA

Application of FPGAs in Industrial Robots

Time: 2025-04-18 11:00:53View:

Field-Programmable Gate Arrays (FPGAs) are increasingly critical in industrial robotics due to their parallel processing capabilities, low-latency determinism, and hardware reconfigurability. They enable high-performance control, real-time sensor processing, and flexible customization for specialized robotic applications.

470238455_122166486260270806_2571408029662731429_n.jpg


Key Applications of FPGAs in Industrial Robots

1. Real-Time Motion Control

  • Function: High-speed, deterministic control of multi-axis servo motors.

  • FPGA Advantages:

    • Sub-microsecond latency for closed-loop control

    • Hardware-accelerated trajectory planning

  • Example:

    • ABB IRB 6700 – Uses Xilinx FPGAs for nanosecond-level servo synchronization.

    • KUKA KR C5 – FPGA-based EtherCAT Master for precise motor control.

2. High-Speed Sensor Processing

  • Function: Real-time processing of encoders, LiDAR, force/torque sensors, and vision systems.

  • FPGA Advantages:

    • Parallel ADC data processing

    • Low-latency filtering (e.g., Kalman filters in hardware)

  • Example:

    • Fanuc R-30iB Plus – Intel Cyclone FPGAs process 16-bit encoder data at 10kHz.

    • Universal Robots e-Series – FPGA-based 6-axis torque sensing for collaborative robots.

3. Machine Vision & AI Acceleration

  • Function: Edge AI for object recognition, defect detection, and 3D vision.

  • FPGA Advantages:

    • Low-power, high-throughput CNN acceleration

    • Real-time image preprocessing (e.g., HDR, noise reduction)

  • Example:

    • Omron TM Robotics – Xilinx Zynq UltraScale+ runs YOLOv4 at 60FPS.

    • Sick Ranger3 Camera – FPGA-enabled 3D point cloud generation for bin picking.

4. Industrial Communication Protocols

  • Function: Hardware-accelerated EtherCAT, PROFINET, or Time-Sensitive Networking (TSN).

  • FPGA Advantages:

    • Jitter-free (<1µs) communication

    • Multi-protocol support in a single chip

  • Example:

    • Yaskawa Motoman HC20 – Altera FPGA implements dual EtherCAT ports.

    • B&R Automation – Xilinx FPGAs enable PROFINET IRT for robotic cells.

5. Safety-Critical Functions

  • FunctionSafe torque off (STO), emergency stop, and collision detection.

  • FPGA Advantages:

    • SIL3/PL e compliance with lockstep cores

    • Redundant signal processing

  • Example:

    • KUKA LBR iiwa – Xilinx Zynq UltraScale+ runs dual-core safety logic.

    • ABB SafeMove2 – FPGA monitors position/speed limits in real time.

6. Power Electronics Control

  • Function: PWM generation for servo drives and regenerative braking.

  • FPGA Advantages:

    • Nanosecond-precision PWM (e.g., for SiC/GaN inverters)

    • Dead-time compensation in hardware

  • Example:

    • Fanuc Servo Amplifiers – Altera FPGAs control IGBT/SiC-based drives.

    • Yaskawa Σ-7 Servo – FPGA-managed adaptive current control.

7. Custom Robotic Peripherals

  • FunctionProprietary algorithms (e.g., adaptive grippers, haptic feedback).

  • FPGA Advantages:

    • Reconfigurable I/O for custom sensors/actuators

    • No OS overhead (bare-metal execution)

  • Example:

    • Schunk EGI Gripper – FPGA implements force-controlled gripping.

    • OnRobot HEX 6-Axis F/T Sensor – Lattice FPGA processes 6D force data.


FPGA vs. Traditional Processors in Robotics

FeatureFPGACPU/GPU
LatencyNanosecond-level deterministicMicrosecond/millisecond delays
ParallelismTrue parallel processingLimited by cores/threads
Power EfficiencyLow power for fixed tasksHigher power consumption
FlexibilityReconfigurable hardwareFixed architecture
Safety CertificationEasier SIL3/PL e complianceRequires additional hardware

Future Trends

✔ AI/FPGA Hybrids – Combining FPGA acceleration with neural networks (e.g., Xilinx Vitis AI).
✔ 5G-Enabled Robotics – FPGAs for ultra-low-latency wireless control.
✔ Predictive Maintenance – FPGA-based vibration/fault analysis.
✔ Soft Robotics – Reconfigurable control for adaptive grippers.

Conclusion

FPGAs are revolutionizing industrial robotics by enabling ultra-fast, deterministic, and customizable control. From high-speed motor control to real-time vision processing, they address critical challenges in Industry 4.0 automation.